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A TECHNIQUE FOR THE SYNTHESIS OF LINEAR, NONSTATIONARY
FEEDBACK SYSTEMS

PART I. THE APPROXIMATION PROBLEM

A. R. Stubberud

Summary: In this paper and in a companion paper a technique for the synthesis of linear,
nonstationary feedback systems is presented. This paper deals with the approximation
problem, i. e., a method is developed whereby a realizable weighting function which
produces a desired output when subjected to a polynomial input can be generated.
Certain conditions which must be fulfilled by the outputs are also developed.

INTRODUCTION

Literally, the phrase "synthesis of a system" implies that a designer proceeds
logically in a step-by-step manner from a set of system specifications to a system
which will meet these specifications. In this sense many of the design techniques for
control systems are not true synthesis techniques. As examples, in the field of linear,
stationary control systems, the root locus and frequency domain methods are not true
synthesis techniques. On the other hand, the design method proposed by Guillemin 1,
in which the closed loop transfer function is first determined from the specifications
and the compensation is determined subsequently is a synthesis technique.

Synthesis techniques in the areas of nonlinear control and linear, nonstationary
control are few and, in general, quite specialized. No general synthesis techniques
for feedback systems in either of these areas have been developed. The reason for
this is quite simple. No general analytical techniques comparable to the techniques
available for stationary systems are available for nonlinear and linear, nonstationary
systems. The analytical techniques which are available are usually quite difficult,
quite specialized or both and therefore do not lend themselves readily to application to
the synthesis problem.

Engineers have put more effort into developing general approaches to the analy-
sis of linear, nonstationary systems than they have into nonlinear systems. The two
general approaches which have received the most attention are the weighting function
approach 2, 3, 4 and the time varying transfer function approach. 5, 6, 7 Each of these
is a logical extension of stationary system analysis. Another approach to analysis
which has been discussed to a lesser degree is the differential equation approach.
8, 9, 10, 11

Synthesis techniques for nonstationary systems have tended less toward certain
general approaches than have the analytical techniques. One approach which has been
proposed synthesizes a given nonstationary transfer function, or a given weighting
function, as an open loop system consisting of parallel elements of lower order. 12, 13



Another synthesis scheme allows a given nonstationary weighting function to be synthe-
sized as an open loop system composed of analog computer elements. 2, 4, 14, 15 Pro-
cedures which allow a nonstationary system to be synthesized in the form of a feed-
back system are relatively few. Malchikov, 16, proposed one procedure by means of
which a given weighting function can be synthesized as a feedback system. The pro-
cedure is applicable to the case where the system is required to contain a "fixed"
plant. This method has the disadvantage that certain integral equations must be solved
at specific points in the development.

One possible way of categorizing the techniques of analysis and synthesis of
linear, nonstationary systems is to classify them according to the mathematical repre-
sentations which are used to describe the elements of the system. In this sense the
three categories would be: (1) nonstationary transfer functions; (2) weighting functions;
and (3) differential equations. These categories cannot be made too rigid since in any
one problem it might be desirable to use more than one representation. Each of the
three categories has its own methods for combining elements of a system and each has
certain advantages over the others. As was indicated in the preceding paragraph,
synthesis techniques which fall into the first two categories have been developed; how-
ever none have been developed which fall into the third. The differential equation
approach, however, has certain combinatorial techniques which are advantageous in
the synthesis problem and the purpose of this paper is to develop a synthesis technique
which exploits these combinatorial techniques.

SCOPE OF THIS PAPER AND COMPANION PAPER 18

Guillemin, 1, in 1947, proposed that the synthesis of linear, stationary feedback
systems should be accomplished in three steps as follows:

(a) The closed-loop transfer function is determined from the specifications.

(b) The corresponding open-loop transfer function is found.

(c) The appropriate compensation networks are synthesized.

In this paper this synthesis technique is generalized to include linear, non-
stationary systems which may, or may not, be required to contain a "fixed" plant.
This technique makes use of the combinatorial techniques developed in Reference 8.
The steps to be followed in the nonstationary case are:

(a) The closed loop weighting function is determined from the specifications.
(It is desirable to specify the system by its weighting function since the
system output for any input can then be determined by convolution. )

(b) From the closed loop weighting function determine the corresponding
closed loop differential equation.

(c) Determine the open loop differential equation from the closed loop differ-
ential equation.
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(d) Determine the differential equations for the appropriate compensation net-

works and synthesize these networks by appropriate analog computer systems.

Implementation of this procedure requires techniques for: (1) determining a
weighting function which meets the given specifications; and (2) manipulating this
weighting function in such a way that the appropriate compensation networks can be de-
veloped. A method is developed by means of which a weighting function can be de-
termined which meets the specifications that: (1) the input to the system is a polynomial
in time; and (2) the corresponding output approximates a given time function. In ad-
dition the application of the combinatorial manipulations developed in Reference 8 to
the synthesis problem are described in detail in a related companion paper. 18 To
clarify these procedures some simple examples are worked in this and the companion
paper. 18

THE APPROXIMATION PROBLEM

The first step of the synthesis problem is to determine a system weighting
function which will perform according to the given specifications. This step will be
called the approximation problem. Actually for the technique which is developed in
this report it would be adequate to determine a system differential equation; however it
is more desirable to know the system weighting function since the system output can
then be determined for any input by application of the convolution integral.

There are many methods by which a system weighting function might be obtained;
for instance, it might be given directly in the system specifications. In any event, once
it has been established (it must have certain special properties defined below), the pro-
cedure presented in the companion paper 18 can be followed to complete the synthesis
problem. In the rest of this section a specialized method for determining weighting
functions is presented. The method is restricted to systems which receive inputs
which are expressed as polynomials in time and whose outputs can be approximated as
a separable function (see below).

This approximation method can be formulated as follows. In Figure 1 let

LINEAR SYSTEM

FIGURE 1

x(t) be a polynomial in time given by

N

x(t) = x(t - ') = (t- r)n t-> •

0n

= 0 t<T (1)

where the a are constants, t is time, and r is the time of application of x(t) to then
linear system W. y(t) is the output of the linear system W which is produced as a re-
sult of the application of x(t). It is assumed that an analytic expression for y(t) can be
determined from the specifications. W is the unknown linear system whose weighting
function W(t, T) is to be specified in a form which can be synthesized as a feedback
system. From the convolution integral, y(t) can be expressed as

3



y(t) = S W(t, 9)x(O)dO (2)
-00

Substituting Equation (1) into Equation (2), y(t) becomes

N n
Y~t Y~t a $ an tO[O] do

y(t) W(t,) 1- dO; t->T (3)

-oo
=0 t<,r

The problem now reduces to that of solving the integral Equation (3) for W(t, r). Fortu-
nately this equation reduces readily to a linear, stationary differential equation which is
easily solved. Prior to showing this, however, it is necessary to restrict the class of

W(t, T) which are allowed in the synthesis technique. Similar restrictions are placed on
y (t,T) later. It is assumed in all the succeeding works that W(t,T) corresponds to the
solution of the following linear differential'equation

m m

ci(t)--.[ W(t,T)] jt)- [6(t-7] (4)

i=o j=o

where 6(t-T) is a delta function occurring at time T, and c. (t) and b. (t) are continuous
1 J

functions of time. The properties of a W(t, T) satisfying an equation with the form
of Equation (4) have been discussed in detail previously 2, 4, 8, 10,11, 12,13,14 and
this discussion will not be repeated here. Suffice it to say that W(t,T) can be written in
the form

W(t.r) = W 1(to7) + b (t) 6(t-r) t 1,r (5)

=0 t<r

where W (t, ') has the form

m
Wl1(t, r) = I g (IT) q (t) t 2!T (6)

j=1

S0 t<T

in which the q's must have 2n continuous derivatives and the g's must have n continuous
derivatives. 8

Substituting Equation (5) into Equation (3), the relationship
N NN t  )[ _-,]n d  Nm t (7)

Yx(tT) I an W(tT[ ] dO + b(t) I an(tT)n (7)
n=o m n=o

4



results. The solution of this equation will be broken into two parts: (1) determination
of b (t), and (2) determination of W (t, T).

First, a technique for determining b m(t) will be presented. Assume that ak

(0 5 k S N) is that one of the non-zero a s with the lowest valued subscript, i. e.,

N N

Yx(t, T) kan SW 1 (t, 0)(0-_r)nde + bm(t) an(tT)n (8)

If now the kth partial derivative of yx(t, r) with respect to r is formed, the relationship

k yx(t, ) N
ka tWl (t, O)(-1)k (n)(n-1)... (n+k+l)(-r)n-k dO +

rnkan ri

+ b m(t)a - 1) k(n)(n- 1)... (n-k+l)(t-T) n-k (9)

results. Now if the limit of x as T-t is formed, the equationaT 
k

k akyx* i frmdth euaio

akY(t, b (t) k (10)

ark m-kt k

is formed. Solving Equation (10) for b i(t), the desired relationship for b i(t) is

obtained, i.e.,

k akyx(t, T)

b (t)= 1k Ct 

(k

m (k!)ak

Once b (t) is known the expressionm

N

bmM(t) an(t-T) n  (12)
n=o

can then be formed. Now a new function yx'(t, r) is formed from Equation (8) as

5



N N

YX I(tD*T) = yx (tiT) -b m(t) I a (t .r)n I~ anW 1 (t, )(0 _T)n dO (13)

The second problem now is to determine W 1(t, r) from Equation (13). First, deriva-

tives of y x (t, r) with respect to ri are formed. The first derivative is:

a'x (t, r) =N a tW(t, 0)(- )n(O -T)n- 'dO = a Wl(t,'r) (4
niao 1 1(4

The kth derivative (k<N + 1) is:

8I y '(t,,r) N tk-

k a I n j W(t,6)(-1) (n)(n-i)...(n-k+i)(0 -7)n dO

k-1i k-1jW1,r

a _1 ! k-i-j k = 1, 2,. .. , N (15)

8N+ly '(t, r) N a Nj W (t r)

8N+1 I(lj'j)aj cr- 1)

Equation (16) is seen to be a linear, stationary differential equation whose solution is
W (,r). To solve this differential equation uniquely N initial conditions must be ob-

tained. Examination of Equations (15) shows that in these equations if r-t,

ak Yx~~) k1ak-i- (,r
k = I(t,'ij) k-i a w(t ar-'- (17)

or

ak-1 ~i1 a + 1k1jW1 (t.T) (8
ar Wkt1r) - 1 )7 aky,(,I (_1) (j!)a. i }Tk--

k-it 7~t a 
7 .t1dI

4 k= 1,2,..., N

6



Equations (18) represent a set of recursive relationships which provide the N necessary
"initial conditions". Actually since the derivatives of W1 (t, r) are with respect to r,

Equations (18) represent final conditions. This inconvenience is easily remedied by
making the substitution

T = t - z (19)

into Equations (16) and (18). The resulting equations can then be easily solved and by
making the inverse substitution

z = t - 7 (20)

into the solution obtained, W 1(t, r) is recovered.

As a special case of this development Equations (11) and (16) are examined for the
degenerate case of x(t), i. e.,

N
x(t-,r) = aN14(t-T)N(1

Equation (11) becomes

8 y N (tr
,Nx

b (t) 8N T t (22)
m (NO aN

Equation (16) becomes:

N+I1,SYx '(t,T) N+1
N+ (-1) (N!)aN W1 (t, r) (23)

)N+1

or

N+1 -N+ly '(t,T)

W 1(t, T) 8rN+1 (24)
( N + I

Equations (23) and (24) then should be used in the event that the input is a polynomial
with but one non-zero coefficient. This case obviously includes step function inputs.

It is obvious that in order for W(t, r) to have the form indicated in Equations (5) and
(6) certain restrictions must be placed on the form of yx(t, 7). Referring to Equation (1)

let x n(t-T) = a n(t-)n, then x(t-T) can be rewritten

7



N N

x(t-r) =I an(t-,r)n = on(t-,) (25)
n=o

Equation (3) can then be rewritten in the form

N

y(t, T) = I $ W(t, 0) xn(0) dO (26)
n=o -00

However, since W(tr) satisfies Equation (4), yx(t, r) and x(t-T) are related

through the equation:

SaiYx(t T) m 8Jx(t-) m N an (t-r)
I ci(t) I b(t) I b .(t) (27)i=o at j=o at3  j=o n=o atj

N m ax (t-T)

=- bj(t) nj=0 "=0 8ti

Examination of the input x(t-'r) term by term reveals that each x (t-r) = a n(t-7) n

nn

can be formed by integrating the delta function (a n)(n!) 6(t-T) a total of n+l times, i.e.,

X = a = ---na n 6(t-T) dt (28)

Using relationships (26), (27) and (28) a block diagram which corresponds to Equation
(27) can be drawn as shown in Figure 2.

In Figure 2, yn is that part of the output y(t) due to the xn(t-T) component of
x(t-T), i.e.,

N

yx(t, T) = Yn(t, T) (29)
n=o

The notation 1 /pn within a box in Figure 2 indicates that the input to the box is integrated
n times. The system in Figure 2 apparently represents a linear system with a delta
function as an input and y x(t, r) as an output. Figure 3(a) represents the nth branch of
the system in Figure 2.

8



a30  I/p 0 DIFF INT

a1 I/P2  XDIFF INT Y

" _ 22 _X DFF INT

d o -_ .--------

N1a N  I/p N + l DIFF INT N

BLOCK DIAGRAM EQUIVALENT OF EQUATION (27)

FIGURE 2

fl!O7 N7,N+I ' I (Nt )

th
n BRANCH OF FIGURE 2

FIGURE 3

9



Each branch then is seen to consist of a cascade combination of two linear differential
equations. This combination can be replaced by a single differential equation (see the
companion paper 18) as indicated in Figure 3(b). Figure 2 is then equivalent to N+1
parallel differential equations and it can be replaced by a single equivalent linear differ-
ential equation (see companion paper 18). Since the input to this system is a delta
function and the output is y_ (t, -0, then yx(t, T) is obviously the weighting function of the
equivalent linear differential equation. The first requirement on y (t, r) then is that it
must satisfy all of the requirements of a weighting function, i.e., A must be a separa-
ble function of t and r with the form

M

yx(t, ) = I a T)u(t) t-'r
j=o

= 0 t<T (30)

where the a. (T) are linearly independent and the u (t) are linearly independent. Obvi-

ously yx'(t, T) (see Equation 13) will have the same form. The possibility of y (t, T)

containing singularity functions (i. e., delta functions or derivatives of delta functions)
is dismissed since in practice other than continuous outputs will not be encountered.

In addition to the requirement that y..(t, 7) have the form indicated in Equation (30),
examination of Equations (11),(16), and (18), which are rewritten here for convenience,
reveal some additional requirements on Yx(t, T).

ak yx(t, T)

b (-1) k aTk  T-t (11)
n (k!)ak

a N+l YxI'1t, T) N a N-j W 1 (t, T )
aN+ = o (-l)J+l(j!)aj aj N_ j - (16)

k-i I kak- W 1(t, T) 1 a y _ '(t,' T)

8 l at aTtk

k-i ak-l-jw (t, )

-1 (-l)J+l(j!) a. k-1-j (18)j=l 8T~' -J

k = 1,2,...,N

10,



The solution for Equation (16) has the form

N N+1
N8 y '(x a

W (t,,r) - ce + G(a-))N )N+ I  da (31)=1 t

where the c. are functions of the "initial conditions" in Equation (18); the 6's are roots1
of the polynomial

N

(j!) a yNj= 0 (32)
=0

and G(x-e) is the solution of the differential equation

N NJ G(x.8)

(j!) a. a iG xe) = 6(x-O) (33)

j=o axN

From Equation (30)
M

Yx'l t, a) = j(a) ujl(t) (34)

i= 1

a N+1Ix(t. r)

and N +  = ai (N+1)(a) u(t) (35)
i=1

If G(o- r) is written in its general exponential form as

r- 7' -) (36)G(a- r) = T re

r=1

then W 1(t,'T) can be written in the form

N N M
1' Wit ) = cilt) e 1 T.e $ (- ) uj .(N+ I) (o)u(t)dcr (37)

i=1 i=1 t j=l

Rearranging Equation (37)

Wl(t,)= e'rci(t)eit + ( 1 )N+l Ti u (t) FiM(t)]

,1=1 j=1

M N
+Iu i M 1)_N  T ie F. (38)

j1 i=l

11



where

F i(t) - S e- aj (a) da (39)

Equation (38) indicates that W (t,7) is a separable function of t and 'r with a maximum

of M+N terms; therefore it can be written

M+N

Wl(t, ) g.(T) u(t) (40)
j=1

where the g's and u's are defined according to Equation (38). In order for W 1(t, r) to be

a weighting function of the type considered in Equation (6) it is sufficient that the g's
have M+N continuous derivatives and the u's have 2(M+N) continuous derivatives.
Applying these differentiability requirements to Equation (38) it can be seen that the a's
should have 2M+3N continuous derivatives and the u's should have 2M+2N continuous
derivatives.

Example

As an example of the technique just developed, consider the following problem.
The input to a linear system has the form:

x(t-7) = 2u(t-7) + (t-,r) - 2(t-0-)2  (41)

From the system specifications, the output of the system is required to have the form:

3 5i T +3 -T2y (t,T)( = 4_t1 T

+tL2[,+1 +-Tr + 1] L 6 [3r _+ (42)

From the given input x(t-T) and the desired output the weighting function W(t, T), which
represents the desired linear system, is to be determined. It was shown that W(t, T) can,
in general, be divided into two parts, i. e.,

W(t, T) = W 1 (t,,') + b In(t) 6(t-7) (43)

The output yx(t, T) can then be represented by

N N

y(t, T) = an nWt, 0)(0-T.IndO + bruit) a (t-T)n (44)
n=o T d-

12



where N - 2, ao =2 a, = 1, and -2.
a2

The first step in determining W(t, r) is to find b (t). Taking the limit of
+ m

Yx(t,7) as t-0o, the relationship in Equation (45) is obtained.

lim yx(t,-r) - 2r= bm(r) a o; (45)

therefore

2t
b (t) = = t (46)

m a
0

The second term of yx(t, ,) in Equation (44) is then

N

b(t) a(t-T)n= t[2--272] + t2[i+4,r] +t3[ -2] (47)
n=o

Inserting (47) into (44) and solving for

N

Yxt(t,T) = Yx(t, ,) - bi(t) n an(t-_)n (48)
n=o

Equation (49) is obtained:

yx'(tiT) - 7 5 +t4[+ -Lr + t3 3 r - 2
YX 12~r 6 3 _21 14

+t2 -2+1r2 + 73 +t +13 + 14] (49)

Next the derivatives of yx'(t,T) with respect to T are formed

12 t4 + t3  2 22

-- t +t [ 1- 2 ] + t [-2 + T +272 +t[-27 + 12 + ( 3 (50)

2,

3X 2
=4t 2 + t + 4tT (52)8y 3

13



Referring to Equations (16) and (18) in the previous section it can be seen that

a 3y'(t,r) 2 aw 1 (t, 7) a 2W 1 (t, )
= 4t + t + 4tr = -2a 2 Wl(t,) + I  -a 0 2 (53)87 3  a, 2

1 1 y x ( t , 7' ) 2Wl1(t,t- a - 8o T - = 2t 2  (54)

aT a 2 a1 l(t t (55)
0 -t oI ai -tit

The solution of the set of Equations (53), (54) and (55) then is the desired weighting
function. To simplify the algebra involved and to make the solution of this set of
equations easier, the following substitutions are made

z=t- "

k2 = 2t

2 t
kI = 4t +t

f(z) = W (t, t-z) (56)1'

Then since ao = 2, a= 1 and a2 -2, Equations (53), (54) and (55) can be rewritten as:

df 1ldf
+ d 2f = kz -k (53')

dz 2z 2 1

f(O) = 2t 2  (54')

f'(0) = -t (55')

The complementary solution of Equation (53') has the form
-'y1x - 'y2 x

f (x) = Ae + Be (57)

where A and B are functions of the initial conditions and Y1 and -2 are roots of the
polynomial

2 12Y +1iY-2 = 0 (58)

14



The particular solution has the form

k1  k2  k2f = x (59)

The entire solution then has the form

-7x -7 2 x k1  k2 _k 2

f(x) = Ae + Be + k 8 2 x (60)

Applying the initial conditions of (54') and (55'), the constants A and B can be deter-
mined to be

f() + 2 72 -f'(0) - k22 (61)

k 2. k 22 1

A = 1-2

f'(0) + 2 +1 [f(O)+ 8 -

B = 1 -7'2 (62)

Substituting the values in (54'), (55') and (56) it can be shown that

A-0
(63)

B=0

f(x) therefore equals the particular solution of the differential equation, i. e.,
kI  k2  k2

f(x)- 8 2 x (64)

Substituting the values of Equations (56) into (64) it is seen that

Wl(t,T) = t 2 + tT (65)

The overall weighting function defined by Equation (43) is then

W(t, T) = t 2 + tT + t6(t-T) (66)

and the problem is solved. Convolution of (66) and (41) will indeed produce Y,(t, T)

as given in Equation (42).

APPROXIMATION OF SEPARABLE FUNCTIONS

From the discussion in the previous section it is obvious that for a large class of
synthesis problems the response function must have the form of a separable function
which satisfies suitable differentiability conditions. In addition, the class of weighting
functions considered in this paper are separable functions. It is then necessary to the
synthesis technique to have a method of approximating a function of two variables as a
separable function of the two variables. Some work has been done on this problem; for

15



instance, Cruz, 17, proposed an impulse-train approximation of weighting functions; and
Cruz and Van Valkenberg, 13, proposed a method of approximating weighting functions as
separable functions which approximate the weighting functions in some sense. The rest
of this section describes a simple method of approximating a function of two variables as
a separable function.

As a tool to help explain this approximation method, a final value controller will
be considered. Suppose that a system is to be designed according to the following speci-
fications. The system will receive a step input at some time (which is unknown) between
t = 0 and t = T and it is required that the system settle to within n% of its final steady
state value (unity) by time Ts where Ts > T. On the other hand, it is desirable to keep

the system as sluggish as possible at all times. Thus if the system is designed as a
nonstationary linear system, the first step of the design is to determine a step response
y(t, T) of this system which satisfies the specifications. From this y(t, T), the appropriate
weighting function can be determined and the design completed.

Figure 4 represents a two-dimensional view of y(t, T) in which the 7 axis is per-
pendicular to the plane of the paper. The planes y(t, 0) and y(t, T) are the two planes
which bound the region of interest of y(t, r), i. e., if the function y(t, 'r) is suitable in this

(t,r) y(t,O)

yAt'r)

T Ts_

TWO DIMENSIONAL VIEW OF y(t, T)

FIGURE 4

region the specifications can be met. Suppose that y(t, 0) and y(t, T) are chosen with the
form: -a 1 t (67)

y(t, 0) = 1 - e
-_a 2 (t -T)

y(t, T) = 1 -e

where a1 and a2 are chosen so that

y(T , O) = Y(ts PT) = 1 - (68)

It is seen then that y(t, 7) meets the specifications for two values of 7, i.e., 7 =0 and
T = T. In addition y(t, 7) for 0-<75-T might be fixed for several additional values of T; how-
ever for the purpose of this exposition two will suffice. Obviously if y(t, 7) could be
represented by relationships similar to Equations (67) for all 0<5T-T, the specifications
could be met exactly. The number of values of T for which y(t,T) is fixed, for instance by
Equations (67), will also be the number of terms in the final separable function; thus the
better the desired approximation the higher the order of the resultant system.
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Suppose Figure 4 is redrawn as in Figure 5 in which the t axis is now normal to

the plane of the paper. Outside the region 0--: -T, y(t, 7) is arbitrary. At the boundaries
of the region y(t, r) satisfies Equations (67).

Y(t, i)

- - Y0t,)-Y(tlO)

y(t,T)
y(t,O)

APPROXIMATION OF y(t, T)

FIGURE 5

If the only constrai ts on y(t, r) are at 7=0 and 'r=T, y(t, T) can be approximated in several
ways. For instance let

y(t, T) = y(t, 0) + [y(t, T) - y(t, 0)j u(T-T) (69)

where u(T-T) is a step function occurring at T=T. y(t, T) then corresponds to the full line
function in Figure 5. If Equation (69) is Laplace transformed with respect to T, the
resulting transform Y(t, s) is given by:

Y(t, s) = y(t, 0) + y(t, T) - y(t, 0) e -sT (70)
S S

-sTe
Now if e is approximated by a Pade approximation 1, for instance,

e -sT 2 (s-3/T) (71)
s T s 2  s /T2]

thenr
s~ t + ) 2S (s-3T)(2

Y(t, S)' y*(t, s ) + [ y(t, T) - y(t, 0)1]-, 2~(2
L T ss 2 +4/T' + 6/T 2 )

The inverse transform of Y*(t, s) will be denoted y*(t,T). Other Pade approximations

could be used in Equation (70). Obviously a better approximation would be obtained if a
higher order polynomial were used. This particular approximation was chosen because

it is relatively simple and because the numerator is of lesser degree than the denominator.

This latter condition forces the second term of y*(t, T) to be zero at T = 0, and, hence,
y*(t, 0) = y(t, 0). Taking the inverse transform of Y*(t, s, ), the approximation y*(t, T) is
obtained as:

y*(t,T) = y(tO e 2T sin( + 1

+y(tT)1 - 3e -2T /T sin( ':+ ;)] t- 7
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where 0 - sin "1 (1/3) and y(t, 0) and y(t, T) are given in Equation (67).

Obviously this type of an approximation meets the differentiability requirements discussed
in the previous section. As a very rough check on the accuracy of the approximation
y*(t,7) it is seen that

y*(t, 0) = y(t, 0)

y*(t, T) = 0. 398y(t, 0) + 0. 602y(t, T) (74)

y*(t, 00) = y(t, T)

The accuracy of this type of approximation can be improved by: (1) approximating y(t, r)
by several steps in the r direction (see Figure 5), i.e., let

N

y(t, T) = y(t, 0) + yt, n T) -y(t, )T u(- 2 T) (75)
N-1EN

-n
-sT
N

where N is an integer; and (2) using a higher order Pade approximation for e

Another method of approximation which might be used is to approximate a higher
order derivative of y(t, T) as a series of step functions in the T direction and then inte-
grating this function an appropriate number of times to regain y(t, ,). As an example,
the derivative of the dotted line representation of y(t, ') in Figure 5 is

(1)=a [y(t, T) y(t, T) -y(t, 0) [u(T) u(t-) 1  (76)

If this equation is transformed, the Pade approximation in Equation (7) is used, and an

inverse transform is then taken; the approximation of y(O 1)(t, T) which is denoted

y*(O, 1)(t, ,T) is given by

Y* (0')(t) = y(tT)- y(t, 0) 3e-2,/Tsin[ 2, (77)

-1 1

where again 4, = sin (-). Then since

y*(t,7) = y(t, 0) +$YO O1)(t, e) dO (78)

the final approximation is:

-2'r/T r1 . V2_T ,r2T r 2/Tl 1 ;2
y*(t,) = y(t,0) sin -T +Cos + y(t,T) 1 e sin

+ cos j ; t- 2 (79)

y*(t,.T) = 0 t < T
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As a comparison with the approximation of Equation (73), it is seen that

y*(t, 0) = y(t° 0)

y*(t, T) = 0. ll6y(t, 0) + 0. 884 y(t, T) (80)

y*(t, cc) = y(t, T)

This procedure then produces a more accurate approximation to y(t, z) than does the first
procedure. Again a better approximation can be found if a F t ,) is approximated by

more terms as in the case for y(t, r) in the first procedure (see Equation 75).

These approximating procedures, while leaving something to be desired from the
standpoint of mathematical sophistication, are straightforward and easily applied to not
only weighting functions and step responses but also polynomial responses which are also
separable functions. The advantage of this method is that the functions obtained always
have enough differentiability to apply the methods developed in the preceding section.

CONCLUSIONS

In this paper the approximation portion of a synthesis technique for linear, non-
stationary feedback systems has been presented. A method for determining a weighting
function which transforms a polynomial input into an output which can be described by
a separable function of two variables is presented. In addition, a method is described
by means of which a function of two variables can be approximated by a separable
function of the two variables.

In a companion paper 18 the synthesis technique is completed in that it is shown
how a weighting function can be synthesized as a feedback system.
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